

H₂O₂ STERILISATION

Hydrogen peroxide is increasingly being used as a method of bio-decontamination and sterilisation in the pharmaceutical industry or in the field of medicine. Both equipment and entire rooms can be sterilised with H_2O_2 vapour.

The $\rm H_2O_2$ vapour is produced in a generator and transported to the area of application by means of a carrier gas (usually air). The process is also termed VHP (Vaporised Hydrogen Peroxide) sterilisation.

In many areas which are sterilised by H_2O_2 , a humidity measurement is necessary during normal use. Capacitative polymer sensors are often used for this. These sensors are attacked by H_2O_2 and even at low H_2O_2 concentrations a significant drift of the sensor characteristics occurs. In order to prevent these false readings, the humidity sensor must be removed during phases of H_2O_2 vaporisation.

As solution to this problem is the use of a special filter cap, which protects the humidity sensor from H_2O_2 . With this, the humidity sensor can remain in the

system during sterilisation.

Properties of the H₂O₂ filter:

The filter cap consists of a PTFE sinter filter, in which a catalyst is embedded. The catalyst decomposes the $\rm H_2O_2$ into harmless water and oxygen, so that the humidity sensor in the filter cap is not exposed to $\rm H_2O_2$ and no drift occurs.

With the aid of the filter cap the relative humidity can also be measured during the phases of H_2O_2 application. This is of interest, as the effectiveness and duration of some sterilisation methods also depend on the relative humidity in the system.

Structure of a sterilisation system

E+E solution

H₂O₂ Filter HA010115 Catalytic filter for H₂O₂ environments

Specially developed for use with H_2O_2 sterilisation